Coverage dependent water dissociative adsorption on Fe(110) from DFT computation.
نویسندگان
چکیده
Using density functional theory calculations and ab initio atomistic thermodynamics, H2O adsorption and dissociation on the Fe(110) p(4 × 4) surface at different coverages have been computed. At the lowest coverage, the adsorbed H2O, OH, O and H species can migrate easily on the surface. For (H2O)n adsorption, H2O molecules donating H atoms for H-bonding adsorb more strongly than those accepting H atoms for H-bonding. Monomeric H2O dissociation is favored both thermodynamically and kinetically. On nO pre-covered Fe(110) surfaces (n = 1-8), H2O dissociation is accessible for nO + H2O (n = 1-7) both kinetically and thermodynamically, while H2O desorption instead of dissociation occurs at n = 8. With the increased number of surface O atoms, H2 dissociative adsorption energies vary in a narrow range for n = 1-4 and decrease for n = 5-7, while at n = 8, the surface does not adsorb H2. At low OH coverage (n = 2, 4), OH groups are perpendicularly adsorbed without H-bonding, while for n≥ 6, adsorbed OH groups are linearly arranged and stabilized by H-bonding. The maximal OH coverage (n = 12) is 0.75 ML and the reasonable O coverage (n = 7) is 0.44 ML, in line with the experiment. The calculated desorption temperatures of H2O and H2 agree well with the available experimental data. These results provide fundamental insights into water-involved reactions catalyzed by iron and interaction mechanisms of water interaction with metal surfaces.
منابع مشابه
Bromine and Iodine Adsorption on an Fe ( 100 ) Surface
We studied bromine and iodine adsorption on an Fe(100) surface in the temperature range of 110 K to 700 K. In this communication we compare core-level binding energies of dissociatively and molecularly adsorbed halogen species as a function of coverage. Our valence band photoemission data suggest that bromine and iodine adsorption at 300 K is always dissociative. At 110 K, initial dissociative ...
متن کاملFirst principles analysis of H2O adsorption on the (110) surfaces of SnO2, TiO2 and their solid solutions.
Both associative and dissociative H(2)O adsorption on SnO(2)(110), TiO(2)(110), and Ti-enriched Sn(1-x)Ti(x)O(2)(110) surfaces have been investigated at low ((1)/(12) monolayer (ML)) and high coverage (1 ML) by density functional theory calculations using the Gaussian and plane waves formalism. The use of a large supercell allowed the simulation at low symmetry levels. On SnO(2)(110), dissociat...
متن کاملDissociative and non-dissociative adsorption dynamics of N2 on Fe(110).
We study the adsorption dynamics of N(2) on the Fe(110) surface. Classical molecular dynamics calculations are performed on top of a six-dimensional potential energy surface calculated within density functional theory. Our results show that N(2) dissociation on this surface is a highly activated process that takes place along a very narrow reaction path with an energy barrier of around 1.1 eV, ...
متن کاملA DFT-Based Model on the Adsorption Behavior of H2O, H+, Cl-, and OH- on Clean and Cr-Doped Fe(110) Planes
The impact of four typical adsorbates, namely H2O, H+, Cl−, and OH−, on three different planes, namely, Fe(110), Cr(110) and Cr-doped Fe(110), was investigated by using a density functional theory (DFT)-based model. It is verified by the adsorption mechanism of the abovementioned four adsorbates that the Cr-doped Fe(110) plane is the most stable facet out of the three. As confirmed by the adsor...
متن کاملStructures and energies of Cu clusters on Fe and Fe3C surfaces from density functional theory computation.
Spin-polarized density functional theory computations have been carried out to study the stable adsorption configurations of Cun (n = 1-7, 13) on Fe and Fe3C surfaces for understanding the initial stages of copper promotion in catalysis. At low coverage, two-dimensional aggregation is more preferred over dispersion and three-dimensional aggregation on the Fe(110) and Fe(100) surfaces as well as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 14 شماره
صفحات -
تاریخ انتشار 2015